MARTINGALES IN \mathbb{D} -MODULE VALUED L^p -SPACES

KAILASH SHARMA AND SUMIT DUBEY

Abstract. In this paper, we introduce the concept of \mathbb{D} -module valued L^p -spaces.We generalised the concept of conditional expectation on classical L^p -spaces to the concept of conditional expectation on \mathbb{D} -module valued L^p -spaces. Finally the concept of martingales in these spaces is introduced.

Keywords. D-measure space, D-random variable, conditional expectation, martingales.

1. INTRODUCTION

The work is essentially based on the book of M.M.Rao [11]. Let us define the set of extended hyperbolic numbers $\overline{\mathbb{D}}$ as $\overline{\mathbb{D}} = \{z = \alpha e + \beta e^{\dagger} | \alpha, \beta \in \overline{\mathbb{R}}\}$, and the set of non negative extended hyperbolic numbers

$$\bar{\mathbb{D}}^+ = \left\{ z = \alpha e + \beta e^\dagger | \alpha, \beta \in \bar{\mathbb{R}}^+ \right\},\$$

where \mathbb{R} is the set of extended real numbers and \mathbb{R}^+ is the set of non negative extended real numbers. If $z_1, z_2 \in \mathbb{D}$, then z_1+z_2, z_1z_2 and $0z_1$ may be undefined unless $z_1, z_2 \in \mathbb{D}$. Let (Ω, Σ, μ) be a measure space and

Kailash Sharma, Department of Mathematics, Govt. Degree College, Kathua J&K - 184104, India.
E-mail : kailash.maths@gmail.com
Sumit Dubey, Department of Mathematics, Govt. Degree College, Kathua J&K - 184104, India.
E-mail : sumitdubey911@gmail.com

 $\mathfrak{B} \subset \Sigma$ a σ -subalgebra such that μ/\mathfrak{B} is localizable. If $f: \Omega \to \overline{\mathbb{R}}$ is any measurable function such that f^+ or f^- is μ -integrable, then recall that any \mathfrak{B} - measurable function $\tilde{f}: \Omega \to \overline{\mathbb{R}}$ satisfying the system of equations

$$\int_{B} f \, d\mu = \int_{B} \tilde{f} \, d\mu / \mathfrak{B}, \ B \in \mathfrak{B},$$

is called a version of conditional expectation of f given \mathfrak{B} , and is denoted by $E_{\mathfrak{B}}(f) = \tilde{f}$ see [12] Let $f: \Omega \to \overline{\mathbb{D}}^+$ be a \mathbb{D} - measurable function on a \mathbb{D} - measure space $(\Omega, \Sigma, \mu_{\mathbb{D}})$ and $\mathfrak{B} \subset \Sigma$ be a σ -subalgebra such that $\mu_{\mathbb{D}}/\mathfrak{B}$ is localizable. Then $f = ef_1 + e^{\dagger}f_2$, where $f_i: \Omega \to \overline{\mathbb{R}}^+, i = 1, 2$ are real valued measurable functions on $(\Omega, \Sigma, \mu_{\mathbb{D}})$. The idempotent components $\mu_i/\mathfrak{B}, i = 1, 2$ of $\mu_{\mathbb{D}}/\mathfrak{B}$ are localizable.

2. \mathbb{D} -module valued L^p -spaces

If $E_{\mathfrak{B}}(f_i)$, i = 1, 2 are conditional expectations of f_i , i = 1, 2 relative to \mathfrak{B}

Received 06.09.2022, Revised 11.10.2022, Accepted 16.10.2022, Published 21.10.2022

then we call $E_{\mathfrak{B}}(f) = eE_{\mathfrak{B}}(f_1) + e^{\dagger}E_{\mathfrak{B}}(f_2)$ the conditional expectation of f relative to \mathfrak{B} . We denote by $L^p(\Omega, \Sigma, \mu_{\mathbb{D}})$, the set of all \mathbb{D} -measurable functions f on Ω such that $|f|_k^p$ is \mathbb{D} -lebesgue integrable. This set turns out to be a Banach \mathbb{D} -module under the operations of pointwise addition and scalar multiplication equipped with hyperbolic norm which can be decomposed as $L^p(\Omega, \Sigma, \mu_{\mathbb{D}}) = eL^p(\Omega, \Sigma, \mu_1) +$ $e^{\dagger}L^{p}(\Omega, \Sigma, \mu_{2})$, where $L^{p}(\Omega, \Sigma, \mu_{1})$ and $L^p(\Omega, \Sigma, \mu_2)$ are classical spaces of equivalence classes of real valued measurable functions whose pth power is \mathbb{D} - Lebesgue integrable. The properties exhibited by conditional expectations of real valued measurable functions can be lifted to the expectations of \mathbb{D} -measurable functions. Let $X = eX_1 + e^{\dagger}X_2$ be a Banach \mathbb{D} - module equipped with hyperbolic norm and a Schauder basis $\{u_i\}_{i=1}^{\infty}$ and $(\Omega, \Sigma, \mu_{\mathbb{D}})$ be a finite \mathbb{D} - measure space. Then every $f: \Omega \to X$ can be written as f(w) = $\sum_{i=1}^{\infty} f_i(w) u_i$. If each f_i is \mathbb{D} - measurable function on Ω , then we say that f is mea-For $1 \leq p < \infty$, the set of surable. all measurable functions $f: \Omega \to X$ such that $||f||_{\mathbb{D}} \in L^p(\Omega, \Sigma, \mu_{\mathbb{D}})$ is denoted by $L^p(\mu_{\mathbb{D}}, X)$. That is,

 $L^{p}(\mu_{\mathbb{D}}, X) = \{ f : \Omega \to X \mid f \text{ is measurable} \\ \text{and } ||f||_{\mathbb{D}} \in L^{p}(\Omega, \Sigma, \mu_{\mathbb{D}}) \}$

and it forms a Banach \mathbb{D} -module under the operations of pointwise addition and scalar multiplication, where the norm of any element f is given by

 $||f||_{L_p(\mu_{\mathbb{D}},X)} = (\int_{\Omega} ||f||_{\mathbb{D}}^p d\mu_{\mathbb{D}})^{\frac{1}{p}}$. This space can be decomposed as

$$L^{p}(\mu_{\mathbb{D}}, X) = eL^{p}(\mu_{1}, X_{1}) + e^{\dagger}L^{p}(\mu_{2}, X_{2}),$$

where

$$L^{p}(\mu_{i}, X_{i}) = \{f_{i} : \Omega \to X_{i} \mid f_{i} \text{ is measurable} \\ \text{and } ||f_{i}||_{i} \in L^{p}(\Omega, \Sigma, \mu_{i})\}$$

are Banach spaces with $||f_i||_{L_p(\mu_i,X_i)} = (\int_{\Omega} ||f_i||_i^p d\mu_i)^{\frac{1}{p}}$ for each i=1,2.A sequence $\{f_n\}$ converges to f in $L^p(\mu_{\mathbb{D}}, X)$ iff $||f_n - f||_{\mathbb{D}}$ converges to 0 in $L^p(\Omega, \Sigma, \mu_{\mathbb{D}})$.

Theorem 2.1. Let $(\Omega, \Sigma, \mu_{\mathbb{D}})$ be a \mathbb{D} measure space and $1 \leq p < \infty$. Then for each $\epsilon \in \mathbb{D}^+$, $f \in L^p(\mu_{\mathbb{D}}, X)$, there exists a function $h_{\epsilon} = \sum_{i=1}^{\infty} \alpha_i f_i \in L^p(\mu_{\mathbb{D}}, X)$, where each $f_i \colon \Omega \to \mathbb{D}$ is a simple function such that $||f - h_{\epsilon}||_{L^p(\mu_{\mathbb{D}}, X)} \prec \epsilon$.

Proof. Let $f = \sum_{i=1}^{\infty} f_i u_i \in L^p(\mu_{\mathbb{D}}, X)$ and let $\epsilon \in \mathbb{D}^+$ be given. Then $f_i \in L^p(\Omega, \Sigma, \mu_{\mathbb{D}})$ for each i. Therefore for each i, there exists a simple function $f_{\epsilon_i} \in L^p(\Omega, \Sigma, \mu_{\mathbb{D}})$ such that $||f_i - f_{\epsilon_i}||_{L^p(\Omega, \Sigma, \mu_{\mathbb{D}})} \prec \epsilon(\frac{1}{i(i+1)}) = \epsilon_i$. Let $h_{\epsilon} = \sum_{i=1}^{\infty} f_{\epsilon_i} u_i$. Then $h \in L^p(\mu_{\mathbb{D}}, X)$

$$||f - h_{\epsilon}||_{L^{p}(\mu_{\mathbb{D}}, X)}$$

$$= ||\Sigma_{i=1}^{\infty} (f_{i} - f_{\epsilon_{i}}) u_{i}||_{L^{p}(\mu_{\mathbb{D}}, X)}$$

$$\leq \Sigma_{i=1}^{\infty} ||f_{i} - f_{\epsilon_{i}}||_{L^{p}(\Omega, \Sigma, \mu_{\mathbb{D}})} ||u_{i}||_{\mathbb{D}}$$

$$(2.1) \qquad = \Sigma_{i=1}^{\infty} ||f_{i} - f_{\epsilon_{i}}||_{L^{p}(\Omega, \Sigma, \mu_{\mathbb{D}})}$$

$$\prec \Sigma_{i=1}^{\infty} \epsilon_{i}$$

$$= \Sigma_{i=1}^{\infty} \epsilon (\frac{1}{i(i+1)} = \epsilon.$$

Theorem 2.2. (Dominated Convergence Theorem) Let $(\Omega, \Sigma, \mu_{\mathbb{D}})$ be a \mathbb{D} -measure space and $\{f_n\}$ be a sequence of Xvalued measurable functions on Ω such that $\lim_{n\to\infty} f_n(w) = f(w), \forall w \in \Omega$. If there exists a \mathbb{D} -valued lebesgue integrable measurable function g on Ω such that $||f_n(w)||_{\mathbb{D}} \leq$ $g(w), n = 1, 2, 3, \ldots, w \in \Omega$, then $f \in$

$$L^{p}(\mu_{\mathbb{D}}, X)$$
 and
$$\lim_{n \to \infty} \int_{\Omega} f_{n} d\mu_{\mathbb{D}} = \int_{\Omega} f d\mu_{\mathbb{D}}.$$

Proof. Take $g_n = ||f_n - f||_{\mathbb{D}}$ and dominating function as 2g. The proof follows by applying the scalar Dominated Convergence Theorem to the sequence $\{g_n\}$.

3. CONDITIONAL EXPECTATION

Let $(\Omega, \Sigma, \mu_{\mathbb{D}})$ be a finite measure space and \mathfrak{B} be a sub σ -algebra of Σ . If $\lambda : \mathfrak{B} \to X$ is countably additive set function, then we can write $\lambda = \sum_{i=1}^{\infty} \lambda_{\mathbb{D}}^{i} u_{i}$, where each $\lambda_{\mathbb{D}}^{i} : \mathfrak{B} \to \mathbb{D}$ is countably additive. Let $f : \Omega \to X$ be given by $f(w) = \sum_{i=1}^{\infty} f_{i}(w)u_{i}$, where each $f_{i} : \Omega \to \mathbb{D}$ and further suppose that $\int_{\Omega} ||f(x)||_{\mathbb{D}} d\mu_{\mathbb{D}} \in \mathbb{D}$. Then $\lambda(E) = \int_{E} f(w) d\mu_{\mathbb{D}}$ defines a X valued set function on Σ and so it can be written as $\lambda(E) = \sum_{i=1}^{\infty} \lambda_{\mathbb{D}}^{i}(E)u_{i}$, where $\lambda_{\mathbb{D}}^{i}(E) = \int_{E} f_{i}(w) d\mu_{\mathbb{D}}$ for each i. Then we have the following definition.

Definition 3.1. If $f(w) = \sum_{i=1}^{\infty} f_i(w)u_i$ is integrable, where each $f_i: \Omega \to \mathbb{D}$ is \mathbb{D} measurable and $g(w) = \sum_{i=1}^{\infty} E^{\mathfrak{B}}(f_i)(w)u_i$, then we call g the conditional expectation of f given \mathfrak{B} and we write $g = E^{\mathfrak{B}}(f)$.

Remark 3.2. If $f(w) = \sum_{i=1}^{\infty} f_i(w) u_i$ is measurable, then each f_i is \mathbb{D} -measurable for \mathfrak{B} and $\int_B f_i \ d\mu_{\mathbb{D}} = \int_B E^{\mathfrak{B}}(f_i) \ d\mu_{\mathbb{D}}, \forall B \in \mathfrak{B}$. This gives $\int_B f \ d\mu_{\mathbb{D}} = \sum_{i=1}^{\infty} u_i \int_B f_i \ d\mu_{\mathbb{D}} = \sum_{i=1}^{\infty} u_i \int_B E^{\mathfrak{B}}(f_i) \ d\mu_{\mathbb{D}} = \int_{\mathfrak{B}} \sum_{i=1}^{\infty} u_i E^{\mathfrak{B}}(f_i) = \int_{\mathfrak{B}} E^{\mathfrak{B}}(f) \ d\mu_{\mathbb{D}}.$

We can decompose each $E^{\mathfrak{B}}(f_i)$ as $E^{\mathfrak{B}}(f_i) = eE^{\mathfrak{B}}(f_i^1) + e^{\dagger}E^{\mathfrak{B}}(f_i^2)$, where each

$$f_{i} = ef_{i}^{1} + e^{\dagger}f_{i}^{2} \text{ and so}$$

$$E^{\mathfrak{B}}(f) = e\Sigma_{i=1}^{\infty}E^{\mathfrak{B}}(f_{i}^{1})(w)u_{i}$$

$$(3.1) \qquad + e^{\dagger}\Sigma_{i=1}^{\infty}E^{\mathfrak{B}}(f_{i}^{2})(w)u_{i}$$

$$= eE^{\mathfrak{B}}(f^{1}) + e^{\dagger}E^{\mathfrak{B}}(f^{2}),$$

where f^{j} is X_{j} valued measurable and integrable function and $\{u_{i}^{j}\}_{i=1}^{\infty}$ is schauder basis of X_{j} for each j=1,2.

Lemma 3.3. If $f_i = \sum_{j=1}^{\infty} f_i^j u_i^j \in L^p(\mu_i, X_i)$ and $\sum_{i=1}^{\infty} ||f_i^j|| < \infty$, then $E^{\mathfrak{B}}(f_i) \in L^p(\mu_i, X_i)$ for each i=1,2.

Proof. If $f_i = \sum_{j=1}^{\infty} f_i^j u_i^j$, then $E^{\mathfrak{B}}(f_i) = \sum_{i=1}^{\infty} E^{\mathfrak{B}}(f_i^j) u_i^j$. Therefore

$$|E^{\mathfrak{B}}(f_{i})||_{L^{P}(\mu_{i},X_{i})} = ||\Sigma_{j=1}^{\infty}E^{\mathfrak{B}}(f_{i}^{j})u_{i}^{j}||_{L^{P}(\mu_{i},X_{i})}$$

$$\leq \Sigma_{j=1}^{\infty}||E^{\mathfrak{B}}(f_{i}^{j})||||u_{i}^{j}||_{i}$$

$$= \Sigma_{j=1}^{\infty}||E^{\mathfrak{B}}(f_{i}^{j})||$$

$$\leq \Sigma_{j=1}^{\infty}||f_{i}^{j}|| < \infty.$$

Hence $E^{\mathfrak{B}}(f) \in L^p(\mu_i, X_i)$ for each i=1,2.

Theorem 3.4. If $f = \sum_{i=1}^{\infty} f_i$ $u_i \in L^p(\mu_{\mathbb{D}}, X)$ and $\sum_{i=1}^{\infty} ||f_i|| \in \mathbb{D}$, then $E^{\mathfrak{B}}(f) \in L^p(\mu_{\mathbb{D}}, X).$

Proof. We have $\sum_{i=1}^{\infty} ||f_i|| = e \sum_{i=1}^{\infty} ||f_i^1|| + e^{\dagger} \sum_{i=1}^{\infty} ||f_i^2|| \in \mathbb{D}$. Therefore $\sum_{i=1}^{\infty} ||f_i^j|| < \infty$ for each i=1,2. and so by Lemma 3.3, $E^{\mathfrak{B}}(f_i) \in L^p(\mu_i, X_i)$ for each i=1,2. Hence $E_{\mathfrak{B}}(f) = e E_{\mathfrak{B}}(f^1) + e^{\dagger} E_{\mathfrak{B}}(f^2) \in e L^p(\mu_1, X_1) + e^{\dagger} L^p(\mu_2, X_2) = L^p(\mu_{\mathbb{D}}, X)$.

The operator $E^{\mathfrak{B}} \colon L^1(\mu_{\mathbb{D},X}) \to L^1(\mu_{\mathbb{D},X})$ satisfies the following properties:

(i) $E^{\mathfrak{B}}$ is linear transformation, i.e, $E^{\mathfrak{B}}(\alpha \ f + \beta \ g) = \alpha E^{\mathfrak{B}}(f) +$ $\beta E^{\mathfrak{B}}(g), \forall \alpha, \beta \in \mathbb{D} \text{ and } f, g \in L^1(\mu_{\mathbb{D}}, X).$

- (ii) $E^{\mathfrak{B}}$ is a contraction, i.e, $||E^{\mathfrak{B}}(f)||_{L^1} \leq ||f||_{L^1}$
- (iii) $E^{\mathfrak{B}}(E^{\mathfrak{G}}(f)) = E^{\mathfrak{B}}(f), \forall f \in L^1(\mu_{\mathbb{D}}, X).$
- (iv) If $\mathfrak{B}_1 \subset \mathfrak{B}_2 \subset \Sigma$ are σ -algebras and $\mu_{\mathbb{D}}/\mathfrak{B}_i$ are localizable, then

$$E^{\mathfrak{B}_{1}}(E^{\mathfrak{B}_{2}}(f)) = E^{\mathfrak{B}_{2}}(E^{\mathfrak{B}_{1}}(f)) = E^{\mathfrak{B}_{1}}(f).$$
(v) If $\mathfrak{H} \subset \mathfrak{B} \subset \mathfrak{D}$, then $E^{\mathfrak{H}}(E^{\mathfrak{B}}(f)) = E^{\mathfrak{B}}(f).$

Proof. (i)

$$\begin{split} &\int_{A} E^{\mathfrak{B}}(\alpha \ f + \beta \ g)d \ \mu_{\mathbb{D}}/\mathfrak{B} \\ &= \int_{A} (\alpha \ f + \beta \ g)d \ \mu_{\mathbb{D}} \\ &= \alpha \int_{A} fd \ \mu_{\mathbb{D}} + \beta \int_{A} gd \ \mu_{\mathbb{D}} \\ &= \alpha \int_{A} E^{\mathfrak{B}}(f)d \ \mu_{\mathbb{D}}/\mathfrak{B} \\ &+ \beta \int_{A} E^{\mathfrak{B}}(g)d \ \mu_{\mathbb{D}}/\mathfrak{B} \\ &= \int (\alpha \ E^{\mathfrak{B}}(f) + \beta \ E^{\mathfrak{B}}(g))d \ \mu_{\mathbb{D}}/\mathfrak{B}. \end{split}$$

Hence,

$$E^{\mathfrak{B}}(\alpha \ f + \beta \ g) = \alpha E^{\mathfrak{B}}(f) + \beta E^{\mathfrak{B}}(g).$$
(ii)

$$\int_{A} E^{\mathfrak{B}}(f.g) d \ \mu_{\mathbb{D}}/\mathfrak{B} = \int_{A} (f.g) d \ \mu_{\mathbb{D}}$$
$$= f. \int_{A} f d \ \mu_{\mathbb{D}}$$
$$= f. E^{\mathfrak{B}}(g).$$

4. MARTINGALES

Definition 4.1. Let $(\Omega, \Sigma, \mu_{\mathbb{D}})$ be a \mathbb{D} measure space with finite subset property and Σ_n be an increasing sequence of σ subalgebras of Σ such that $\mu_{\mathbb{D}}/\Sigma_n, n \geq 1$ is localizable. If $\{f_n : n \geq 1\}$ is a sequence in $L^p(\mu_{\mathbb{D}}, X)$ such that f_n is measurable for $\Sigma_n, n \geq 1$, then $\{(f_n, \Sigma_n) : n \geq 1\}$ is called a martingale if for each $n \geq 1$,

(4.1)
$$E^{\Sigma_n}(f_{n+1}) = f_n.$$

It is called a supermartingale if = is replaced by \leq and submartingale if = is replaced by \geq there. We denote the martingale of above form by $\{f_n, \Sigma_n : n \geq 1\}$ to display both the functions and σ – subalgebras.

Example 4.2. Let $f \in L^p(\nu_{\mathbb{D}}, X)$ and $\{\Sigma_n\}$ be an increasing sequence of σ -subalgebras of Σ . If $f_n = E^{\Sigma_n}(f)$, then the sequence $\{f_n, \Sigma_n : n \ge 1\}$ is a martingale in $L^p(\nu_{\mathbb{D}}, X)$.

Remark 4.3. We can write every measurable function $f: \Omega \to X$ as f(w) = $\sum_{i=1}^{\infty} f_i(w) u_i$, where each $f_i \colon \Omega \to \mathbb{D}$ is \mathbb{D} measurable and further each f_i can be written as $f_i = ef_i^1 + e^{\dagger}f_i^2$ such that f_i^j is real measurable for j=1,2. Therefore f(w) = $ef^1(w) + e^{\dagger}f^2(w)$, where $f^i \colon \Omega \to X_i$ is measurable for i=1,2. Thus every martingale $\{(f_n, \Sigma_n) : n \geq 1\}$ can be decomposed as $\{e(f_n^1, \Sigma_n) : n \ge 1\} + e^{\dagger} \{(f_n^2, \Sigma_n) : n \ge 1\},\$ where $\{f_n^j\}$ is a sequence in $L^p(\mu_j, X_j)$ such that μ_i^n is localizable and f_n^j is measurable for $\Sigma_n, n \ge 1$ for each j=1,2. Also by using 3.1, we have $E^{\Sigma_n}(f_{n+1}^j) = f_n, \quad \forall n \geq 0$ 1, j=1,2.Thus $\{(f_n^j, \Sigma_n) : n \ge 1\}$ is a martingale for each j=1,2. Hence the study of X-valued martingales is equivalent to the study of a pair of X_j -valued martingales for j=1,2.

Proposition 4.4. A sequence $\{f_n, \Sigma_n\}_{n\geq 1}$ is a martingale in $L^p(\nu_{\mathbb{D}}, X)$ iff the sequence $\{f_n^j, \Sigma_n : n \geq 1\}$ is a martingale in $L^p(\nu_i, X_i), j=1,2.$

Proof. First suppose that the sequence $\{f_n, \Sigma_n : n \ge 1\}$ is a martingale in $L^p(\nu_{\mathbb{D}}, X)$. For each $n \ge 1$, we can write $f_n = ef_n^1 + e^{\dagger_2}f_n^2$ and $\nu_{\mathbb{D}}/\Sigma_n = e\nu_1/\Sigma_n + e^{\dagger_2}\nu_2/\Sigma_n$, where $\{f_n^j\}$ is a sequence in $L^p(\nu_j, X_j)$ and ν_j/Σ_n is localizable, j=1,2. Now by (4.1), we have

$$E^{\Sigma_n}(f_{n+1}) = eE^{\Sigma_n}(f_{n+1}^1) + e^{\dagger_2}E^{\Sigma_n}(f_{n+1}^2)$$

= f_n
= $ef_n^1 + e^{\dagger_2}f_n^2, n \ge 1,$

which gives $E^{\Sigma_n}(f_{n+1}^j) = f_n^j$, j=1,2. Thus $\{f_n^j, \Sigma_n : n \ge 1\}$ is a martingale in $L^p(\nu_j, X_j)$, j=1,2.

Conversely, suppose that $\{f_n^j, \Sigma_n : n \ge 1\}$ is a martingale in $L^p(\nu_j, X_j)$, j=1,2. Then $f_n = ef_n^1 + e^{\dagger_2} f_n^2$ and so $\{f_n, \Sigma_n : n \ge 1\}$ is a sequence in $L^p(\nu_{\mathbb{D}}, X)$ such that f_n is Σ_n -measurable and

$$E^{\Sigma_n}(f_{n+1}) = eE^{\Sigma_n}(f_{n+1}^1) + e^{\dagger_2}E^{\Sigma_n}(f_{n+1}^2)$$

= $ef_n^1 + e^{\dagger_2}f_n^2$
= $f_n, n \ge 1.$

Thus $\{f_n, \Sigma_n : n \ge 1\}$ is a martingale. \Box

Proposition 4.5. Let $\{f_n, \Sigma_n : n \ge 1\}$ be a martingale in $L^p(\nu_{\mathbb{D}}, X)$. Then the sequence $\{\int_E f_n d\nu_{\mathbb{D}}, n \ge 1\}$ is convergent for every $E \in \bigcup_{n=1}^{\infty} \Sigma_n$.

Proof. Let $\{(f_n, \Sigma_n) : n \ge 1\}$ be a martingale and $E \in \bigcup_{n=1}^{\infty} \Sigma_n$. Since $\{\Sigma_n, n \ge 1\}$ is a monotonically increasing sequence of σ subalgebras of Σ and $E \in \bigcup_{n=1}^{\infty} \Sigma_n$, there exist $n_0 \in \mathbb{N}$ for which $E \in \Sigma_n$, for all $n \ge n_0$. Thus for $n \ge n_0$, we get

$$\int_{E} f_n \, d\nu_{\mathbb{D}} = \int_{E} E^{\sum_{n_0}}(f_n) d\nu_{\mathbb{D}} = \int_{E} f_{n_0} \, d\nu_{\mathbb{D}}$$

as $E^{\sum_{n_0}}(f_n) = f_{n_0}$. Hence the sequence
 $\{\int_{E} f_n \, d\nu_{\mathbb{D}}, n \ge 1\}$ is eventually constant
and so convergent.

This property is very useful in the study of norm convergent martingales.

References

- L. Accardi, Quantum probability: an introduction to some basic ideas and trends, Stochastic models, II (2000), Editors D. Hernandez, J.A. Lopez-Mimbela and R. Quezada, Aportaciones Mat. Investig., Vol. 16, Soc. Mat. Mexicana, Mexico, (2001), 1-128.
- D. Alpay, M. E. Luna-Elizarraras, M. Shapiro, D. C. Struppa, Basics of functional analysis with bicomplex scalars, and bicomplex Schur analysis, Springer Briefs in Mathematics, XV, 2014,95 pp.
- D. Alpay, M. E. Luna-Elizarraras, M. Shapiro, Kolmogorov's axioms for probabilities with values in hyperbolic numbers, Adv.Appl.Clifford Algebras, DOI 10.1007/s00006-016-0706-6, (2016).
- M. E. Luna-Elizarraras, C. O. Perez-Regalado, M.Shapiro, On Linear Functionals and Hahn-Banach Theorems for Hyperbolic and Bicomplex Modules, Adv. Appl. Clifford Algebras,v. 23, Issue 4, (2014), 1105-1129.
- M. E. Luna-Elizarraras, M. Shapiro, D. C. Struppa, A. Vajiac, Bicomplex numbers and their elementary functions, Cubo A Mathematical Journal v. 14. No.2 (2012), 61-80.
- M. E. Luna-Elizarraras, M. Shapiro, D. C. Struppa, A. Vajiac, Complex Laplacian and derivatives of bicomplex functions, Complex Analysis and Operator Theory, v. 7, # 5, (2013), 1675-1711.
- 7. M.E. Luna-Elizarraras, M. Shapiro, D. C. Struppa, A. Vajiac, Bicomplex holomorphic

functions: The algebra, geometry and analysis of bicomplex numbers, Frontiers in Mathematics, Birkhäuser Basel,2015.

- P. A. Meyer, Quantum probability for probabilists, Lecture Notes in Mathematics, Berlin: Springer Verlag, 1993.
- K. R. Parthasarathy, An introduction to quantum stochastic calculus, Monographs in Mathematics 85, Basel: Birkhäuser Verlag, 1992.
- G. B. Price, An Introduction to Multicomplex Spaces and Functions, 3rd Edition, Marcel Dekker, New York, 1991.
- M. M. Rao, Conditional measures and applications, Marcel Dekker, New York, 1993.

- 12. M. M. Rao, Measure Theory and Integration, Marcel Dekker, New York, 2004.
- D. Rochan and M. Shapiro, On algebraic properties of bicomplex and hyperbolic numbers, Anal. Univ. Oradea, Fasc. Math.11(2004), 71-110.
- 14. W. Rudin, Real and Complex Analysis, 3rd Edition, Tata McGraw-Hill, New Delhi, 2006.
- R. Kumar and K. Sharma, Hyperbolic valued measures and Fundamental law of probability, Global Journal of Pure and Applied Mathematics, 13(10), (2017), 7163–7177