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MARTINGALES IN D-MODULE VALUED LP-SPACES

KAILASH SHARMA AND SUMIT DUBEY

Abstract. In this paper, we introduce the concept of D-module valued LP-spaces.We
generalised the concept of conditional expectation on classical LP-spaces to the concept
of conditional expectation on ID-module valued LP-spaces. Finally the concept of mar-

tingales in these spaces is introduced.
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1. INTRODUCTION

The work is essentially based on the
book of M.M.Rao [11]. Let us define the
set of extended hyperbolic numbers D as
D= {z = ae+ Bella, B € R} , and the set
of non negative extended hyperbolic num-
bers

Dt = {z=ae+ Be'la, B €eRT},

where R is the set of extended real numbers
and R is the set of non negative extended
real numbers.If 21, 2z, € D, then 2, +22, 2129
and 0z; may be undefined unless 21, z5 € D.
Let (€,3, 1) be a measure space and
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B C ¥ a o-subalgebra such that u/95 is
localizable.If f: Q — R is any measurable
function such that f* or f~ is u-integrable,
then recall that any 8- measurable func-
tion f: Q — R satisfying the system of
equations

/deuz/deu/%,Be%,

is called a version of conditional expec-
tation of f given B, and is denoted by
Ex(f) = f see [12] Let f: Q@ — D* be
a - measurable function on a D- mea-
sure space (2,2, up) and B C X be a
o-subalgebra such that pp/%B is localiz-
able.Then f = ef; + el fy, where f;: Q —
R*,i = 1,2 are real valued measurable
functions on (€, 3, up). The idempotent
components p;/B,1 = 1,2 of up/B are lo-
calizable.

2. D-MODULE VALUED LP-SPACES

If Ex(f;),i = 1,2 are conditional ex-
pectations of f;,1 = 1,2 relative to ‘B
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then we call Ex(f) = eBEx(f1) + e Ex(f2)
the conditional expectation of f relative to
B. We denote by LP(Q, %, up), the set of
all D-measurable functions f on € such
that |f[ is D-lebesgue integrable.This set
turns out to be a Banach D-module un-
der the operations of pointwise addition
and scalar multiplication equipped with
hyperbolic norm which can be decom-
posed as LP(Q, %, up) = eLP(Q, 3, u1) +
el LP(Q, 3, pp), where LP(Q, X, 1) and
LP(Q, 3, uy) are classical spaces of equiva-
lence classes of real valued measurable func-
tions whose pth power is ID- Lebesgue inte-
grable. The properties exhibited by con-
ditional expectations of real valued mea-
surable functions can be lifted to the ex-
pectations of ID-measurable functions. Let
X = eX; + ¢ X5 be a Banach D- mod-
ule equipped with hyperbolic norm and a
Schauder basis {u;};, and (,%, up) be
a finite D- measure space. Then every
f:Q — X can be written as f(w)
Y2, filw)u;. If each f; is D- measurable
function on €2, then we say that f is mea-
surable. For 1 < p < oo, the set of
all measurable functions f: 2 — X such
that [|f|lp € LP(2, %, up) is denoted by
LP(pp, X). That is,

LP(pp, X) ={f : Q — X | fis measurable

and || f[|p € L*(Q, %, i) }

and it forms a Banach D-module under the
operations of pointwise addition and scalar
multiplication, where the norm of any ele-
ment f is given by

1) = (o 1115 o).

can be decomposed as

This space

LP(pp, X) = eLP (1, X1) + €' LP (2, X5),

where

LP(pi, Xi) = {fi : Q@ — X, | f; is measurable

and || fil: € LP(€2, %, i) }

are Banach spaces with ||f|[z,(u.x,)

(Jo IL£:lI7 d,ui)% for each i=1,2.A sequence
{fn} converges to f in LP(up, X) iff ||f, —
f||p converges to 0 in LP(2, 3, up).

Theorem 2.1. Let (2,%,up) be a D-
measure space and 1 < p < oo. Then for
each e € DV, f € LP(up, X), there exists a
function he = X2, fi € LP(up, X), where
each fi: Q — D is a simple function such
that [|f — he||Lr(up,x) < €

Proof. Let f = X2, fiu; € LP(up, X) and
let e € Dt be given. Then f; € LP(Q, %, up)
for each i.Therefore for each i, there exists
a simple function f., € LP(Q, %, up) such
that ||f1 - fel LP(Q,%,up) < E(m) = €;.
Let he = X2, fe,u;. Then h € LP(up, X)

I[f = hel Lo (un,3)

= |32, (fi = fe)will oo (un,x)
2 EZ i = feller@s ) | [wil[p
(2'1) = Z3001||fz f€i||Lp(sz7M]D>)
=< 2;2161‘
1
S Y
1= 16( ('L+1)

O

Theorem 2.2. (Dominated Convergence
Theorem) Let (Q,%, up) be a D-measure
space and {f,} be a sequence of X-
valued measurable functions on €2 such that
li_}In fo(w) = f(w),Yw € Q. If there ex-
1sts a D-valued lebesgue integrable measur-
able function g on Q such that || fn(w)||p <
gw),n = 1,2,3,...,w € Q, then f €
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LP(up, X) and

lim
n—oo

RXZE /ﬂ f dun.

Proof. Take g, = ||f. — f||lp and dominat-
ing function as 2g. The proof follows by ap-
plying the scalar Dominated Convergence
Theorem to the sequence {g,}. O

3. CONDITIONAL EXPECTATION

Let (€2, %, up) be a finite measure space
and B be a sub g-algebra of . If \: B —
X is countably additive set function, then
we can write A\ = 3% Au;, where each
Ay: B — D is countably additive. Let
f:Q — X begiven by f(w) = 32, fi(w)u;,
where each f;: 2 — D and further suppose
that fQHf )|lp dup € D. Then M\(E) =
[ f(w) dpp defines a X valued set function
on E and so it can be written as A(E) =
S N (B)u,, where Xp(E) = [, fi(w) djis
for each i.Then we have the following defi-
nition.

Definition 3.1. If f(w) = X2, fi(w)y,
is integrable,where each f;: 2 — D is D-
measurable and g(w) = X%, E®(f;)(w)u;,
then we call g the conditional expectation
of f given B and we write g = E®(f).

Remark 3.2. Iff(w) = X2, fi(w)u; is mea-
surable, then each f; is D-measurable for 8
and [, fi dup = [, E®(f;) dup,VB € B.
This gives

fB d,U]D) = 1uz fB fz d,uID)
1uz fB fz dlj“]D) - f% i= 1UZE%<fl) =
f E%(f) dpin.

We can decompose each E®(f;) as
E®(f;)) = eE®(f!) + ' E®(f?), where each

fi=efl +elf2 and so
E®(f) = eXZ B2 (f) (w)u;
+ GTZi1E%(fi2)(w)Ui
= eBR(f1) + BB (f?),
where f7 is X; valued measurable and in-

tegrable function and {u{}zl

basis of X for each j=1,2.

(3.1)

is schauder

Lemma 3.3. If f; =

and S2|f]|l < oo,
LP(p;, X;) for each z':l,,?.

Proof. It fi = X532, Jul,
X5 B ( yul. Therefore

5 flu] € L (s, X)
then E®(f;) €

then E®(f;) =

IE® (F)llruxy = B E® (F )l e g x
< SEANERUD):

=22 [1BE ()

< B2 < oo
Hence E®(f) € LP(u;, X;) for each
i=1,2. O
Theorem 3.4. If f = XX,fi uw, €

LP(pp, X) and Z2|[fil] €
E®(f) € LP(pp, X).

Proof. We have ¥2,||fill = eX2, ]| £ +
e'¥2,|[f?]] € D. Therefore Z°°1||fj|| <
oo for each i=1,2. and so by Lemma

D, then

E®(f) € LP(u, X;) for each
i=1,2. Hence Ex(f) = eBEx(f') +

' Ex(f?) € eLP(u1, X1) + 'L (p, X>) =
LP(up, X). O

The operator E®: L'(up x) — L'(up x)
satisfies the following properties:

(i) E® is linear transformation, i.e,
EPa f+ B g) = aE®(f) +



BE®(g9),Va,3 € D and f,g €
Ll(MDaX>‘

(ii) E® is a contraction, ie,
IE® (NIl 2 Sl
(i) E®(E®(f)) = E*(f)Vf €

Lt (:uDa X) :
(iv) If B; C B, C X are o-algebras and
un/B; are localizable, then

E®(E®(f)) = E¥(E™(f)) = E™(f).

(v) If § C B C 3, then BI(E?(f)) =
E®(f).

Proof. (i)
QAE%@f+69MuW%
=/(af+ﬂg)dum>

A
:aAfdMD+B[49dﬂD
—a [ E*()d /B

A
_ / (o E®(f) + B E®(9))d jun/B.

Hence,
E®(a f+f8g) =aE®(f)+ BE*(g).
(ii)
AEW&WWW%zfumdm

—f/fmm

_fE%
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4. MARTINGALES

Definition 4.1. Let (Q, %, up) be a D-
measure space with finite subset property
and 3, be an increasing sequence of o-
subalgebras of ¥ such that up/%,,n > 1
is localizable. If {f, : n > 1} is a sequence
in LP(pup, X) such that f,, is measurable for
Y,,n > 1, then {(f,,%,) : n > 1} is called
a martingale if for each n > 1,

(4'1) EE”(fn—&-l) = fn-

It is called a supermartingale if = is re-
placed by < and submartingale if = is re-
placed by > there. We denote the mar-
tingale of above form by {f,,%,:n > 1}
to display both the functions and o —
subalgebras.

Example 4.2. Let f € LP(vp, X) and
{¥,} be an increasing sequence of o-
subalgebras of ¥. If f,, = E*"(f), then the
sequence { f,, ¥, : n > 1} is a martingale in
Lp(V]D), X)

Remark 4.3. We can write every measur-
able function f: Q — X as f(w) =
Y2, fi(w)u;, where each f;: Q@ — D is D-
measurable and further each f; can be writ-
ten as f; = ef! + el f? such that f/ is real
measurable for j=1,2. Therefore f(w) =
eft(w)+el f2(w), where fi: Q — X, is mea-
surable for i=1,2. Thus every martingale
{(fn,2Xn) :n>1} can be decomposed as
{e(fL.3,) :n>1} +e {(f2,5,) :n> 1},
where { f7} is a sequence in LP(p;, X;) such
that p is localizable and f7 is measurable
for X,,,n > 1 for each j=1,2. Also by us-
ing [3.1}we have E>n( n+1) fn, Yn >
1, j= 12Thus {(f2,2,) :n > 1} is a mar-
tingale for each j=1,2.Hence the study of
X-valued martingales is equivalent to the



MARTINGALES IN D-MODULE VALUED LP-SPACES 5

study of a pair of X;-valued martingales for
j=1,2.

Proposition 4.4. A sequence {f,,X,},
is a martingale in LP(vp, X) iff the se-
quence {fI, %, :n > 1} is a martingale in
Lp(l/j,Xj), ‘72172

Proof. First suppose that the sequence
{fn,2n:n>1} is a martingale in
LP(vp, X). For each n > 1, we can write
fn = efl+ef2 and vp/%, = e/, +
e, /%, where {f7} is a sequence in
LP(v;, X;) and v;/%, is localizable, j=1,2.
Now by (4.1]), we have
E*(fay1) = eE™(fayr) + 2B (fi)
= Jn
=efy+ePfin>1,

which gives E™(f.)) = fi, j=12.
Thus {f7,%,:n > 1} is a martingale in
LP(V]’, Xj>, J:1,2

Conversely, suppose that {f7 %, :n > 1}
is a martingale in L”(v;, X;), j=1,2. Then
fo = eft +e2f2 and so {f,, 5, :n > 1}
is a sequence in LP(vp, X) such that f, is
Y,-measurable and

E™(fri1) = eE™" (fory) + €2 E™ (f2,))
=efu+ef
= fu,n > 1
Thus {f,, X, : n > 1} is a martingale. [

Proposition 4.5. Let {f,, X, :n > 1} bea
martingale in LP(vp, X). Then the sequence
{fE fn dvp,n > 1} 1s convergent for every
EclU,2 %

Proof. Let {(fn, %) :n > 1} be a martin-
gale and F € U2 ,3,. Since {X,,n > 1} is
a monotonically increasing sequence of o-
subalgebras of ¥ and E € U2 3, there

exist ng € N for which F € %,,, for all n >
ng. Thus for n > ng, we get

/E [ dvp = /E E*ro(f,)dvp = /E fny dp

as E¥(f,) = fn,. Hence the sequence
{ Il g Jndvp,n > 1} is eventually constant
and so convergent.

4

This property is very useful in the study
of norm convergent martingales.
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