Journal of Biosphere, 11: 1-6, 2022
ISSN 2278-3342
吅

MARTINGALES IN \mathbb{D}-MODULE VALUED L^{p}-SPACES

KAILASH SHARMA AND SUMIT DUBEY

Abstract

In this paper, we introduce the concept of \mathbb{D}-module valued L^{p}-spaces. We generalised the concept of conditional expectation on classical L^{p}-spaces to the concept of conditional expectation on \mathbb{D}-module valued L^{p}-spaces. Finally the concept of martingales in these spaces is introduced. Keywords. \mathbb{D}-measure space, \mathbb{D}-random variable, conditional expectation, martingales.

1. Introduction

The work is essentially based on the book of M.M.Rao [11. Let us define the set of extended hyperbolic numbers $\overline{\mathbb{D}}$ as $\overline{\mathbb{D}}=\left\{z=\alpha e+\beta e^{\dagger} \mid \alpha, \beta \in \overline{\mathbb{R}}\right\}$, and the set of non negative extended hyperbolic numbers

$$
\overline{\mathbb{D}}^{+}=\left\{z=\alpha e+\beta e^{\dagger} \mid \alpha, \beta \in \overline{\mathbb{R}}^{+}\right\}
$$

where $\overline{\mathbb{R}}$ is the set of extended real numbers and $\overline{\mathbb{R}}^{+}$is the set of non negative extended real numbers.If $z_{1}, z_{2} \in \overline{\mathbb{D}}$, then $z_{1}+z_{2}, z_{1} z_{2}$ and $0 z_{1}$ may be undefined unless $z_{1}, z_{2} \in \mathbb{D}$. Let (Ω, Σ, μ) be a measure space and

Kailash Sharma, Department of Mathematics, Govt. Degree College,Kathua J®GK 184104, India.
E-mail : kailash.maths@gmail.com
Sumit Dubey, Department of Mathematics, Govt. Degree College,Kathua J $\mathfrak{G} K$ 184104, India.
E-mail : sumitdubey911@gmail.com

[^0]$\mathfrak{B} \subset \Sigma$ a σ-subalgebra such that μ / \mathfrak{B} is localizable.If $f: \Omega \rightarrow \overline{\mathbb{R}}$ is any measurable function such that f^{+}or f^{-}is μ-integrable, then recall that any \mathfrak{B} - measurable function $\tilde{f}: \Omega \rightarrow \overline{\mathbb{R}}$ satisfying the system of equations
$$
\int_{B} f d \mu=\int_{B} \tilde{f} d \mu / \mathfrak{B}, B \in \mathfrak{B}
$$
is called a version of conditional expectation of f given \mathfrak{B}, and is denoted by $E_{\mathfrak{B}}(f)=\tilde{f}$ see [12] Let $f: \Omega \rightarrow \overline{\mathbb{D}}^{+}$be a \mathbb{D} - measurable function on a \mathbb{D} - measure space $\left(\Omega, \Sigma, \mu_{\mathbb{D}}\right)$ and $\mathfrak{B} \subset \Sigma$ be a σ-subalgebra such that $\mu_{\mathbb{D}} / \mathfrak{B}$ is localizable.Then $f=e f_{1}+e^{\dagger} f_{2}$, where $f_{i}: \Omega \rightarrow$ $\overline{\mathbb{R}}^{+}, i=1,2$ are real valued measurable functions on $\left(\Omega, \Sigma, \mu_{\mathbb{D}}\right)$. The idempotent components $\mu_{i} / \mathfrak{B}, i=1,2$ of $\mu_{\mathbb{D}} / \mathfrak{B}$ are localizable.

2. \mathbb{D}-MODULE VALUED L^{p}-SPACES

If $E_{\mathfrak{B}}\left(f_{i}\right), i=1,2$ are conditional expectations of $f_{i}, i=1,2$ relative to \mathfrak{B}
then we call $E_{\mathfrak{B}}(f)=e E_{\mathfrak{B}}\left(f_{1}\right)+e^{\dagger} E_{\mathfrak{B}}\left(f_{2}\right)$ the conditional expectation of f relative to \mathfrak{B}. We denote by $L^{p}\left(\Omega, \Sigma, \mu_{\mathbb{D}}\right)$, the set of all \mathbb{D}-measurable functions f on Ω such that $|f|_{k}^{p}$ is \mathbb{D}-lebesgue integrable. This set turns out to be a Banach \mathbb{D}-module under the operations of pointwise addition and scalar multiplication equipped with hyperbolic norm which can be decomposed as $L^{p}\left(\Omega, \Sigma, \mu_{\mathbb{D}}\right)=e L^{p}\left(\Omega, \Sigma, \mu_{1}\right)+$ $e^{\dagger} L^{p}\left(\Omega, \Sigma, \mu_{2}\right), \quad$ where $\quad L^{p}\left(\Omega, \Sigma, \mu_{1}\right) \quad$ and $L^{p}\left(\Omega, \Sigma, \mu_{2}\right)$ are classical spaces of equivalence classes of real valued measurable functions whose pth power is \mathbb{D} - Lebesgue integrable. The properties exhibited by conditional expectations of real valued measurable functions can be lifted to the expectations of \mathbb{D}-measurable functions. Let $X=e X_{1}+e^{\dagger} X_{2}$ be a Banach \mathbb{D} - module equipped with hyperbolic norm and a Schauder basis $\left\{u_{i}\right\}_{i=1}^{\infty}$ and $\left(\Omega, \Sigma, \mu_{\mathbb{D}}\right)$ be a finite \mathbb{D} - measure space. Then every $f: \Omega \rightarrow X$ can be written as $f(w)=$ $\sum_{i=1}^{\infty} f_{i}(w) u_{i}$. If each f_{i} is \mathbb{D} - measurable function on Ω, then we say that f is measurable. For $1 \leq p<\infty$, the set of all measurable functions $f: \Omega \rightarrow X$ such that $\|f\|_{\mathbb{D}} \in L^{p}\left(\Omega, \Sigma, \mu_{\mathbb{D}}\right)$ is denoted by $L^{p}\left(\mu_{\mathbb{D}}, X\right)$. That is,
$L^{p}\left(\mu_{\mathbb{D}}, X\right)=\{f: \Omega \rightarrow X \mid f$ is measurable and $\left.\|f\|_{\mathbb{D}} \in L^{p}\left(\Omega, \Sigma, \mu_{\mathbb{D}}\right)\right\}$
and it forms a Banach \mathbb{D}-module under the operations of pointwise addition and scalar multiplication, where the norm of any element f is given by
$\|f\|_{L_{p}\left(\mu_{\mathbb{D}}, X\right)}=\left(\int_{\Omega}\|f\|_{\mathbb{D}}^{p} d \mu_{\mathbb{D}}\right)^{\frac{1}{p}}$. This space can be decomposed as

$$
L^{p}\left(\mu_{\mathbb{D}}, X\right)=e L^{p}\left(\mu_{1}, X_{1}\right)+e^{\dagger} L^{p}\left(\mu_{2}, X_{2}\right)
$$

where
$L^{p}\left(\mu_{i}, X_{i}\right)=\left\{f_{i}: \Omega \rightarrow X_{i} \mid f_{i}\right.$ is measurable and $\left.\left\|f_{i}\right\|_{i} \in L^{p}\left(\Omega, \Sigma, \mu_{i}\right)\right\}$
are Banach spaces with $\left\|f_{i}\right\|_{L_{p}\left(\mu_{i}, X_{i}\right)}=$ $\left(\int_{\Omega}\left\|f_{i}\right\|_{i}^{p} d \mu_{i}\right)^{\frac{1}{p}}$ for each $\mathrm{i}=1,2$.A sequence $\left\{f_{n}\right\}$ converges to f in $L^{p}\left(\mu_{\mathbb{D}}, X\right)$ iff $\| f_{n}-$ $f \|_{\mathbb{D}}$ converges to 0 in $L^{p}\left(\Omega, \Sigma, \mu_{\mathbb{D}}\right)$.
Theorem 2.1. Let $\left(\Omega, \Sigma, \mu_{\mathbb{D}}\right)$ be a \mathbb{D} measure space and $1 \leq p<\infty$. Then for each $\epsilon \in \mathbb{D}^{+}, f \in L^{p}\left(\mu_{\mathbb{D}}, X\right)$, there exists a function $h_{\epsilon}=\sum_{i=1}^{\infty} \alpha_{i} f_{i} \in L^{p}\left(\mu_{\mathbb{D}}, X\right)$, where each $f_{i}: \Omega \rightarrow \mathbb{D}$ is a simple function such that $\left\|f-h_{\epsilon}\right\|_{L^{p}\left(\mu_{\mathbb{D}}, X\right)} \prec \epsilon$.
Proof. Let $f=\sum_{i=1}^{\infty} f_{i} u_{i} \in L^{p}\left(\mu_{\mathbb{D}}, X\right)$ and let $\epsilon \in \mathbb{D}^{+}$be given. Then $f_{i} \in L^{p}\left(\Omega, \Sigma, \mu_{\mathbb{D}}\right)$ for each i.Therefore for each i, there exists a simple function $f_{\epsilon_{i}} \in L^{p}\left(\Omega, \Sigma, \mu_{\mathbb{D}}\right)$ such that $\left\|f_{i}-f_{\epsilon_{i}}\right\|_{L^{p}\left(\Omega, \Sigma, \mu_{\mathbb{D}}\right)} \prec \epsilon\left(\frac{1}{i(i+1)}\right)=\epsilon_{i}$.
Let $h_{\epsilon}=\sum_{i=1}^{\infty} f_{\epsilon_{i}} u_{i}$. Then $h \in L^{p}\left(\mu_{\mathbb{D}}, X\right)$

$$
\begin{aligned}
& \left\|f-h_{\epsilon}\right\|_{L^{p}\left(\mu_{\mathbb{D}}, X\right)} \\
& =\left\|\Sigma_{i=1}^{\infty}\left(f_{i}-f_{\epsilon_{i}}\right) u_{i}\right\|_{L^{p}\left(\mu_{\mathbb{D}}, X\right)} \\
& \preceq \Sigma_{i=1}^{\infty}\left\|f_{i}-f_{\epsilon_{i}}\right\|_{L^{p}\left(\Omega, \Sigma, \mu_{\mathbb{D}}\right)}\left\|u_{i}\right\|_{\mathbb{D}} \\
& =\Sigma_{i=1}^{\infty}\left\|f_{i}-f_{\epsilon_{i}}\right\|_{L^{p}\left(\Omega, \Sigma, \mu_{\mathbb{D}}\right)} \\
& \prec \Sigma_{i=1}^{\infty} \epsilon_{i} \\
& =\Sigma_{i=1}^{\infty} \epsilon\left(\frac{1}{i(i+1)}=\epsilon .\right.
\end{aligned}
$$

Theorem 2.2. (Dominated Convergence Theorem) Let $\left(\Omega, \Sigma, \mu_{\mathbb{D}}\right)$ be a \mathbb{D}-measure space and $\left\{f_{n}\right\}$ be a sequence of X valued measurable functions on Ω such that $\lim _{n \rightarrow \infty} f_{n}(w)=f(w), \forall w \in \Omega$. If there exists a \mathbb{D}-valued lebesgue integrable measurable function g on Ω such that $\left\|f_{n}(w)\right\|_{\mathbb{D}} \preceq$ $g(w), n=1,2,3, \ldots, w \in \Omega$, then $f \in$
$L^{p}\left(\mu_{\mathbb{D}}, X\right)$ and

$$
\lim _{n \rightarrow \infty} \int_{\Omega} f_{n} d \mu_{\mathbb{D}}=\int_{\Omega} f d \mu_{\mathbb{D}}
$$

Proof. Take $g_{n}=\left\|f_{n}-f\right\|_{\mathbb{D}}$ and dominating function as 2 g . The proof follows by applying the scalar Dominated Convergence Theorem to the sequence $\left\{g_{n}\right\}$.

3. Conditional Expectation

Let $\left(\Omega, \Sigma, \mu_{\mathbb{D}}\right)$ be a finite measure space and \mathfrak{B} be a sub σ-algebra of Σ. If $\lambda: \mathfrak{B} \rightarrow$ X is countably additive set function, then we can write $\lambda=\sum_{i=1}^{\infty} \lambda_{\mathbb{D}}^{i} u_{i}$, where each $\lambda_{\mathbb{D}}^{i}: \mathfrak{B} \rightarrow \mathbb{D}$ is countably additive. Let $f: \Omega \rightarrow X$ be given by $f(w)=\sum_{i=1}^{\infty} f_{i}(w) u_{i}$, where each $f_{i}: \Omega \rightarrow \mathbb{D}$ and further suppose that $\int_{\Omega}\|f(x)\|_{\mathbb{D}} d \mu_{\mathbb{D}} \in \mathbb{D}$. Then $\lambda(E)=$ $\int_{E} f(w) d \mu_{\mathbb{D}}$ defines a X valued set function on Σ and so it can be written as $\lambda(E)=$ $\sum_{i=1}^{\infty} \lambda_{\mathbb{D}}^{i}(E) u_{i}$, where $\lambda_{\mathbb{D}}^{i}(E)=\int_{E} f_{i}(w) d \mu_{\mathbb{D}}$ for each i.Then we have the following definition.

Definition 3.1. If $f(w)=\sum_{i=1}^{\infty} f_{i}(w) u_{i}$ is integrable, where each $f_{i}: \Omega \rightarrow \mathbb{D}$ is \mathbb{D} measurable and $g(w)=\sum_{i=1}^{\infty} E^{\mathfrak{B}}\left(f_{i}\right)(w) u_{i}$, then we call g the conditional expectation of f given \mathfrak{B} and we write $g=E^{\mathfrak{B}}(f)$.
Remark 3.2. If $f(w)=\sum_{i=1}^{\infty} f_{i}(w) u_{i}$ is measurable, then each f_{i} is \mathbb{D}-measurable for \mathfrak{B} and $\int_{B} f_{i} d \mu_{\mathbb{D}}=\int_{B} E^{\mathfrak{B}}\left(f_{i}\right) d \mu_{\mathbb{D}}, \forall B \in \mathfrak{B}$. This gives
$\int_{B} f d \mu_{\mathbb{D}}=\sum_{i=1}^{\infty} u_{i} \int_{B} f_{i} \quad d \mu_{\mathbb{D}}=$ $\sum_{i=1}^{\infty} u_{i} \int_{B} E^{\mathfrak{B}}\left(f_{i}\right) d \mu_{\mathbb{D}}=\int_{\mathfrak{B}} \sum_{i=1}^{\infty} u_{i} E^{\mathfrak{B}}\left(f_{i}\right)=$ $\int_{\mathfrak{B}} E^{\mathfrak{B}}(f) d \mu_{\mathbb{D}}$.

We can decompose each $E^{\mathfrak{B}}\left(f_{i}\right)$ as $E^{\mathfrak{B}}\left(f_{i}\right)=e E^{\mathfrak{B}}\left(f_{i}^{1}\right)+e^{\dagger} E^{\mathfrak{B}}\left(f_{i}^{2}\right)$, where each
$f_{i}=e f_{i}^{1}+e^{\dagger} f_{i}^{2}$. and so

$$
\begin{align*}
E^{\mathfrak{B}}(f)= & e \sum_{i=1}^{\infty} E^{\mathfrak{B}}\left(f_{i}^{1}\right)(w) u_{i} \\
& +e^{\dagger} \Sigma_{i=1}^{\infty} E^{\mathfrak{B}}\left(f_{i}^{2}\right)(w) u_{i} \tag{3.1}\\
= & e E^{\mathfrak{B}}\left(f^{1}\right)+e^{\dagger} E^{\mathfrak{B}}\left(f^{2}\right),
\end{align*}
$$

where f^{j} is X_{j} valued measurable and integrable function and $\left\{u_{i}^{j}\right\}_{i=1}^{\infty}$ is schauder basis of X_{j} for each $\mathrm{j}=1,2$.

Lemma 3.3. If $f_{i}=\sum_{j=1}^{\infty} f_{i}^{j} u_{i}^{j} \in L^{p}\left(\mu_{i}, X_{i}\right)$ and $\sum_{i=1}^{\infty}\left\|f_{i}^{j}\right\|<\infty$, then $E^{\mathfrak{B}}\left(f_{i}\right) \in$ $L^{p}\left(\mu_{i}, X_{i}\right)$ for each $i=1,2$.

Proof. If $f_{i}=\sum_{j=1}^{\infty} f_{i}^{j} u_{i}^{j}$, then $E^{\mathfrak{B}}\left(f_{i}\right)=$ $\sum_{j=1}^{\infty} E^{\mathfrak{B}}\left(f_{i}^{j}\right) u_{i}^{j}$. Therefore

$$
\begin{aligned}
\left\|E^{\mathfrak{B}}\left(f_{i}\right)\right\|_{L^{P}\left(\mu_{i}, X_{i}\right)} & =\left\|\Sigma_{j=1}^{\infty} E^{\mathfrak{B}}\left(f_{i}^{j}\right) u_{i}^{j}\right\|_{L^{P}\left(\mu_{i}, X_{i}\right)} \\
& \leq \Sigma_{j=1}^{\infty}\left\|E^{\mathfrak{B}}\left(f_{i}^{j}\right)\right\|\left\|u_{i}^{j}\right\|_{i} \\
& =\Sigma_{j=1}^{\infty}\left\|E^{\mathfrak{B}}\left(f_{i}^{j}\right)\right\| \\
& \leq \Sigma_{j=1}^{\infty}\left\|f_{i}^{j}\right\|<\infty .
\end{aligned}
$$

Hence $E^{\mathfrak{B}}(f) \in L^{p}\left(\mu_{i}, X_{i}\right)$ for each $\mathrm{i}=1,2$.

Theorem 3.4. If $f=\sum_{i=1}^{\infty} f_{i} \quad u_{i} \in$ $L^{p}\left(\mu_{\mathbb{D}}, X\right)$ and $\sum_{i=1}^{\infty}\left\|f_{i}\right\| \in \mathbb{D}$, then $E^{\mathfrak{B}}(f) \in L^{p}\left(\mu_{\mathbb{D}}, X\right)$.

Proof. We have $\sum_{i=1}^{\infty}\left\|f_{i}\right\|=e \sum_{i=1}^{\infty}\left\|f_{i}^{1}\right\|+$ $e^{\dagger} \Sigma_{i=1}^{\infty}\left\|f_{i}^{2}\right\| \in \mathbb{D}$. Therefore $\Sigma_{i=1}^{\infty}\left\|f_{i}^{j}\right\|<$ ∞ for each $\mathrm{i}=1,2$. and so by Lemma 3.3. $E^{\mathfrak{B}}\left(f_{i}\right) \in L^{p}\left(\mu_{i}, X_{i}\right)$ for each $\mathrm{i}=1,2$. Hence $E_{\mathfrak{B}}(f)=e E_{\mathfrak{B}}\left(f^{1}\right)+$ $e^{\dagger} E_{\mathfrak{B}}\left(f^{2}\right) \in e L^{p}\left(\mu_{1}, X_{1}\right)+e^{\dagger} L^{p}\left(\mu_{2}, X_{2}\right)=$ $L^{p}\left(\mu_{\mathbb{D}}, X\right)$.

The operator $E^{\mathfrak{B}}: L^{1}\left(\mu_{\mathbb{D}, X}\right) \rightarrow L^{1}\left(\mu_{\mathbb{D}, X}\right)$ satisfies the following properties:
(i) $E^{\mathfrak{B}}$ is linear transformation, i.e, $E^{\mathfrak{B}}(\alpha \quad f+\beta \quad g)=\alpha E^{\mathfrak{B}}(f)+$
$\beta E^{\mathfrak{B}}(g), \forall \alpha, \beta \in \mathbb{D}$ and $f, g \in$ $L^{1}\left(\mu_{\mathbb{D}}, X\right)$.
(ii) $E^{\mathfrak{B}}$ is a contraction, i.e, $\left\|E^{\mathfrak{B}}(f)\right\|_{L^{1}} \preceq\|f\|_{L^{1}}$
(iii) $E^{\mathfrak{B}}\left(E^{\mathfrak{B}}(f)\right)=E^{\mathfrak{B}}(f), \forall f \quad \in$ $L^{1}\left(\mu_{\mathbb{D}}, X\right)$.
(iv) If $\mathfrak{B}_{1} \subset \mathfrak{B}_{2} \subset \Sigma$ are σ-algebras and $\mu_{\mathbb{D}} / \mathfrak{B}_{\mathfrak{i}}$ are localizable, then

$$
E^{\mathfrak{B}_{1}}\left(E^{\mathfrak{B}_{2}}(f)\right)=E^{\mathfrak{B}_{2}}\left(E^{\mathfrak{B}_{1}}(f)\right)=E^{\mathfrak{B}_{1}}(f)
$$

(v) If $\mathfrak{H} \subset \mathfrak{B} \subset \Sigma$, then $E^{\mathfrak{H}}\left(E^{\mathfrak{B}}(f)\right)=$ $E^{\mathfrak{B}}(f)$.

Proof. (i)

$$
\begin{aligned}
& \int_{A} E^{\mathfrak{B}}(\alpha f+\beta g) d \mu_{\mathbb{D}} / \mathfrak{B} \\
& =\int_{A}(\alpha f+\beta g) d \mu_{\mathbb{D}} \\
& =\alpha \int_{A} f d \mu_{\mathbb{D}}+\beta \int_{A} g d \mu_{\mathbb{D}} \\
& =\alpha \int_{A} E^{\mathfrak{B}}(f) d \mu_{\mathbb{D}} / \mathfrak{B} \\
& \quad+\beta \int_{A} E^{\mathfrak{B}}(g) d \mu_{\mathbb{D}} / \mathfrak{B} \\
& =\int\left(\alpha E^{\mathfrak{B}}(f)+\beta E^{\mathfrak{B}}(g)\right) d \mu_{\mathbb{D}} / \mathfrak{B}
\end{aligned}
$$

Hence,

$$
E^{\mathfrak{B}}(\alpha f+\beta g)=\alpha E^{\mathfrak{B}}(f)+\beta E^{\mathfrak{B}}(g)
$$

$$
\begin{align*}
\int_{A} E^{\mathfrak{B}}(f \cdot g) d \mu_{\mathbb{D}} / \mathfrak{B} & =\int_{A}(f \cdot g) d \mu_{\mathbb{D}} \tag{ii}\\
& =f \cdot \int_{A} f d \mu_{\mathbb{D}} \\
& =f \cdot E^{\mathfrak{B}}(g) .
\end{align*}
$$

4. Martingales

Definition 4.1. Let $\left(\Omega, \Sigma, \mu_{\mathbb{D}}\right)$ be a \mathbb{D} measure space with finite subset property and Σ_{n} be an increasing sequence of σ subalgebras of Σ such that $\mu_{\mathbb{D}} / \Sigma_{n}, n \geq 1$ is localizable. If $\left\{f_{n}: n \geq 1\right\}$ is a sequence in $L^{p}\left(\mu_{\mathbb{D}}, X\right)$ such that f_{n} is measurable for $\Sigma_{n}, n \geq 1$, then $\left\{\left(f_{n}, \Sigma_{n}\right): n \geq 1\right\}$ is called a martingale if for each $n \geq 1$,

$$
\begin{equation*}
E^{\Sigma_{n}}\left(f_{n+1}\right)=f_{n} \tag{4.1}
\end{equation*}
$$

It is called a supermartingale if $=$ is replaced by \leq and submartingale if $=$ is replaced by \geq there. We denote the martingale of above form by $\left\{f_{n}, \Sigma_{n}: n \geq 1\right\}$ to display both the functions and σ subalgebras.

Example 4.2. Let $f \in L^{p}\left(\nu_{\mathbb{D}}, X\right)$ and $\left\{\Sigma_{n}\right\}$ be an increasing sequence of σ subalgebras of Σ. If $f_{n}=E^{\Sigma_{n}}(f)$, then the sequence $\left\{f_{n}, \Sigma_{n}: n \geq 1\right\}$ is a martingale in $L^{p}\left(\nu_{\mathbb{D}}, X\right)$.

Remark 4.3. We can write every measurable function $f: \Omega \rightarrow X$ as $f(w)=$ $\sum_{i=1}^{\infty} f_{i}(w) u_{i}$, where each $f_{i}: \Omega \rightarrow \mathbb{D}$ is \mathbb{D} measurable and further each f_{i} can be written as $f_{i}=e f_{i}^{1}+e^{\dagger} f_{i}^{2}$ such that f_{i}^{j} is real measurable for $\mathrm{j}=1,2$. Therefore $f(w)=$ $e f^{1}(w)+e^{\dagger} f^{2}(w)$, where $f^{i}: \Omega \rightarrow X_{i}$ is measurable for $\mathrm{i}=1,2$. Thus every martingale $\left\{\left(f_{n}, \Sigma_{n}\right): n \geq 1\right\}$ can be decomposed as $\left\{e\left(f_{n}^{1}, \Sigma_{n}\right): n \geq 1\right\}+e^{\dagger}\left\{\left(f_{n}^{2}, \Sigma_{n}\right): n \geq 1\right\}$, where $\left\{f_{n}^{j}\right\}$ is a sequence in $L^{p}\left(\mu_{j}, X_{j}\right)$ such that μ_{j}^{n} is localizable and f_{n}^{j} is measurable for $\Sigma_{n}, n \geq 1$ for each $\mathrm{j}=1,2$. Also by using 3.1, we have $E^{\Sigma_{n}}\left(f_{n+1}^{j}\right)=f_{n}, \quad \forall n \geq$ $1, \mathrm{j}=1,2$. Thus $\left\{\left(f_{n}^{j}, \Sigma_{n}\right): n \geq 1\right\}$ is a martingale for each $j=1,2$. Hence the study of X -valued martingales is equivalent to the
study of a pair of X_{j}-valued martingales for $\mathrm{j}=1,2$.
Proposition 4.4. A sequence $\left\{f_{n}, \Sigma_{n}\right\}_{n \geq 1}$ is a martingale in $L^{p}\left(\nu_{\mathbb{D}}, X\right)$ iff the sequence $\left\{f_{n}^{j}, \Sigma_{n}: n \geq 1\right\}$ is a martingale in $L^{p}\left(\nu_{j}, X_{j}\right), j=1,2$.
Proof. First suppose that the sequence $\left\{f_{n}, \Sigma_{n}: n \geq 1\right\} \quad$ is a martingale in $L^{p}\left(\nu_{\mathbb{D}}, X\right)$. For each $n \geq 1$, we can write $f_{n}=e f_{n}^{1}+e^{\dagger_{2}} f_{n}^{2}$ and $\nu_{\mathbb{D}} / \Sigma_{n}=e \nu_{1} / \Sigma_{n}+$ $e^{\dagger_{2}} \nu_{2} / \Sigma_{n}$, where $\left\{f_{n}^{j}\right\}$ is a sequence in $L^{p}\left(\nu_{j}, X_{j}\right)$ and ν_{j} / Σ_{n} is localizable, $\mathrm{j}=1,2$. Now by (4.1), we have

$$
\begin{aligned}
E^{\Sigma_{n}}\left(f_{n+1}\right) & =e E^{\Sigma_{n}}\left(f_{n+1}^{1}\right)+e^{\dagger_{2}} E^{\Sigma_{n}}\left(f_{n+1}^{2}\right) \\
& =f_{n} \\
& =e f_{n}^{1}+e^{\dagger_{2}} f_{n}^{2}, n \geq 1
\end{aligned}
$$

which gives $E^{\Sigma_{n}}\left(f_{n+1}^{j}\right)=f_{n}^{j}, \quad \mathrm{j}=1,2$. Thus $\left\{f_{n}^{j}, \Sigma_{n}: n \geq 1\right\}$ is a martingale in $L^{p}\left(\nu_{j}, X_{j}\right), \mathrm{j}=1,2$.
Conversely, suppose that $\left\{f_{n}^{j}, \Sigma_{n}: n \geq 1\right\}$ is a martingale in $L^{p}\left(\nu_{j}, X_{j}\right), \mathrm{j}=1,2$. Then $f_{n}=e f_{n}^{1}+e^{\dagger_{2}} f_{n}^{2}$ and so $\left\{f_{n}, \Sigma_{n}: n \geq 1\right\}$ is a sequence in $L^{p}\left(\nu_{\mathbb{D}}, X\right)$ such that f_{n} is Σ_{n}-measurable and

$$
\begin{aligned}
E^{\Sigma_{n}}\left(f_{n+1}\right) & =e E^{\Sigma_{n}}\left(f_{n+1}^{1}\right)+e^{\dagger_{2}} E^{\Sigma_{n}}\left(f_{n+1}^{2}\right) \\
& =e f_{n}^{1}+e^{\dagger_{2}} f_{n}^{2} \\
& =f_{n}, n \geq 1 .
\end{aligned}
$$

Thus $\left\{f_{n}, \Sigma_{n}: n \geq 1\right\}$ is a martingale.
Proposition 4.5. Let $\left\{f_{n}, \Sigma_{n}: n \geq 1\right\}$ be a martingale in $L^{p}\left(\nu_{\mathbb{D}}, X\right)$. Then the sequence $\left\{\int_{E} f_{n} d \nu_{\mathbb{D}}, n \geq 1\right\}$ is convergent for every $E \in \bigcup_{n=1}^{\infty} \Sigma_{n}$.
Proof. Let $\left\{\left(f_{n}, \Sigma_{n}\right): n \geq 1\right\}$ be a martingale and $E \in \cup_{n=1}^{\infty} \Sigma_{n}$. Since $\left\{\Sigma_{n}, n \geq 1\right\}$ is a monotonically increasing sequence of σ subalgebras of Σ and $E \in \cup_{n=1}^{\infty} \Sigma_{n}$, there
exist $n_{0} \in \mathbb{N}$ for which $E \in \Sigma_{n}$, for all $n \geq$ n_{0}. Thus for $n \geq n_{0}$, we get
$\int_{E} f_{n} d \nu_{\mathbb{D}}=\int_{E} E^{\Sigma_{n_{0}}}\left(f_{n}\right) d \nu_{\mathbb{D}}=\int_{E} f_{n_{0}} d \nu_{\mathbb{D}}$ as $E^{\Sigma_{n_{0}}}\left(f_{n}\right)=f_{n_{0}}$. Hence the sequence $\left\{\int_{E} f_{n} d \nu_{\mathbb{D}}, n \geq 1\right\}$ is eventually constant and so convergent.

This property is very useful in the study of norm convergent martingales.

References

1. L. Accardi, Quantum probability: an introduction to some basic ideas and trends, Stochastic models, II (2000),Editors D. Hernandez, J.A. Lopez-Mimbela and R. Quezada, Aportaciones Mat. Investig.,Vol. 16,Soc. Mat. Mexicana, Mexico,(2001), 1-128.
2. D. Alpay, M. E. Luna-Elizarraras, M. Shapiro, D. C. Struppa, Basics of functional analysis with bicomplex scalars, and bicomplex Schur analysis, Springer Briefs in Mathematics, XV, 2014,95 pp.
3. D. Alpay, M. E. Luna-Elizarraras, M. Shapiro, Kolmogorov's axioms for probabilities with values in hyperbolic numbers, Adv.Appl.Clifford Algebras, DOI 10.1007/s00006-016-0706-6, (2016).
4. M. E. Luna-Elizarraras, C. O. Perez-Regalado, M.Shapiro, On Linear Functionals and HahnBanach Theorems for Hyperbolic and Bicomplex Modules, Adv. Appl. Clifford Algebras,v. 23, Issue 4, (2014), 1105-1129.
5. M. E. Luna-Elizarraras, M. Shapiro, D. C. Struppa, A. Vajiac, Bicomplex numbers and their elementary functions, Cubo A Mathematical Journal v. 14. No. 2 (2012), 61-80.
6. M. E. Luna-Elizarraras, M. Shapiro, D. C. Struppa, A. Vajiac, Complex Laplacian and derivatives of bicomplex functions, Complex Analysis and Operator Theory, v. 7, \# 5, (2013), 1675-1711.
7. M.E. Luna-Elizarraras, M. Shapiro, D. C. Struppa, A. Vajiac, Bicomplex holomorphic
functions: The algebra, geometry and analysis of bicomplex numbers, Frontiers in Mathematics, Birkhäuser Basel,2015.
8. P. A. Meyer, Quantum probability for probabilists, Lecture Notes in Mathematics, Berlin: Springer Verlag, 1993.
9. K. R. Parthasarathy, An introduction to quantum stochastic calculus, Monographs in Mathematics 85, Basel: Birkhäuser Verlag, 1992.
10. G. B. Price, An Introduction to Multicomplex Spaces and Functions, 3rd Edition, Marcel Dekker, New York, 1991.
11. M. M. Rao, Conditional measures and applications, Marcel Dekker, New York, 1993.
12. M. M. Rao, Measure Theory and Integration, Marcel Dekker, New York, 2004.
13. D. Rochan and M. Shapiro, On algebraic properties of bicomplex and hyperbolic numbers, Anal. Univ. Oradea, Fasc. Math.11(2004), 71110.
14. W. Rudin, Real and Complex Analysis, 3rd Edition, Tata McGraw-Hill, New Delhi, 2006.
15. R. Kumar and K. Sharma, Hyperbolic valued measures and Fundamental law of probability, Global Journal of Pure and Applied Mathematics,13(10), (2017), 7163-7177

[^0]: Received 06.09.2022, Revised 11.10.2022,
 Accepted 16.10.2022, Published 21.10.2022

